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ABSTRACT. VLA observations at 20fcm wavelength specify the brightness

temperature and magnetic structure of plasma conszrained within

coronal loops in solar active regions. Comparisons with simultaneous

S_{ observations at soft X-ray wavelengths lead to measurements of

physical parameters like electron density, electron temperature and

magnetic field strength. Such comparisons also indicate coronal

loops can be detected at either radio or X-ray wavelengths while

remaining invisible in the other spectral domain, and that the dominant

radiation mechanisms can be thermal bremsstrah]unz or thermal

gyroresonance radiation. VLA observations at the longer 90-cm

wavelength reveal the thermal emission of a hot transition sheath

enve!ooin_ a cooler, underlying H_ filament seen in absorption. The

20-cm VLA observations indicate that the precursor, impulsive and

post-flare components of solar flares originate in spatially separated

and resolved sources. The 90-cm VLA data indicate that time-correlated

radio bursts can occur in active regions on opposite sides of the

solar equator. These regions are apparently linked by large-scale,

trans-equatorial magnetic loops at least 2.6 x I0 p k_ (or 6') long;

these loons act as magnetic conduits for relativistic electrons

moving at one-third the velocity of light.

I. INTRODUCTION.

This paper provides a brief overview of recent discoveries by the Tufts

University group using the Very Large Array (VLA) to study the coronal

plasma under the support of the AFOSR and NASA (Section 6). More

detailed accounts can be found in the references given in this

introduction and in Section 7. Ground-based VLA observations at 20-cm

wavelength Can detect the hot coronal plasma previously detected by

space-bourne X-ray telescopes; detailed comparisons of simultaneous

data' (SMM and VLA) indicate that physical parameters can be obtained

(Section 2), but that some coronal loops are invisible in either

spectral domain. (Lang, Willson, Smith and Strong 1987a_b). A_ the longer

9!.6+cm wavelength, the VLA detects more extensive emission interpreted





as a hot 105 K interface between cool, dense Ha filaments and the
hotter, enveloping rarefied corona (Section 3, Lang and Willson, 1989a).
The unparalleled spatial resolu=ion of the VLA at 20-cmwavelength has
shownthat the precursor, impulsive and post-flare componentsof solar
bursts originate in nearby, but separate, coronal loops or systems of
loops (Section 4, Willson, Lang and Liggett, 1990; Willson, Klein,
Kerdraon,Lang and Trotter, 1990). Flaring emission detected at 90-cm
wavelength reveals otherwize-invisible, trans-equatorial loops that
act as magnetic conduits for relativistic electrons that trigger flares
on opposite sides of the solar equator (Section 5, Lang and Willson,
1989b).

2. QUIESCENT20 CMANDX-RAYEMISSIONFROMCORONALLOOPS

The development of aperture synthesis telescopes like the Very Large
Array (VLA) has permitted ground-based observations of coronal loops
at 20-cmwavelength; the quiescent, or non-flaring, loop emission has
brightness temperatures, TB, comparable to the million-degree coronal
electron temperature. A comparison with simultaneous soft X-ray
images of comparable angular resolution and field of view (Fig.l)
indicates that X-ray coronal loops can be completely imaged at 20 cm.
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Figure i. A comparison of soft X-ray (SMM FCS - left) and 20-cm

(VLA-right) images of an active region. Here the sunspots are denoted

by small black dots with a circle around them, and the identical

angular scale for the two images can be inferred from the 120" spacing

be'tween the fiducial marks on the axes. The soft X-ray data were

taken in the 0 VIII line (18.0 A); they show two regions of hot,

million-degree plasma that are also detected at 20 cm. The radio image

also shows hot regions near sunspots that are not detected with soft

X-rays. The contours of the 20-cm map mark levels of equal brightness

temperature corresponding to 0.4, 0.5, 0.6, ... 1.0 times the maximum

brightness temperature of 1.4 x i('° K. (Adapted from Lang et al. (1987a)).
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Soft X-ray spectral lines have been used to determine the electron
temperature, Te, and electron density, Ne, of the X-ray emitting plasma
that spatially coincides with, the 20-cm radiation; for the data shown
in Fig. i, average values of Te = 3.0 ± 0.i x 106 K and Ne = 2.4 ±
0.4 x 109 cm-3 were obtained. The quiescent X-ray radiation is
attributed to thermal bremsstrahlung. The 20-cm emission is optically
thin with optical depths T = Te/TB = 0.3. The thermal bremsstrahlung
of the X-ray emitting plasma ought to be optically thin at 20 cm, but
its thermal gyroresonance radiation should be optically thick at this
wavelength. The low TB is then explained if a higher, cooler plasma
covers the hotter X-ray emitting plasma. Thermal gyroresonance
radiation must account for the intense 20-cm radiation near and above
sunspots where no X-ray radiation is detected (also see Fig. i).

3. QUIESCENT90 CM_MISSIONFROMFILAMENTS.

Although 20-cmVLAobservations of the quiet Sun reveal the ubiguitous
coronal loops anchored within solar active regions, the VLA results at
the longer 91.6-cm wavelength reveal quiescent emission from more
extensive structures (angular sizes 6 = 3') that are not associated
with active regions (Fig. 2 right and left). The 91.6-cm features are
similar in shape, position, elongation and orientation to dark H_
filaments; but the radio structures are wider and longer, and they are
detected in emission rather than absorption. This 91.6-cm _mission has
been interpreted as the thermal bremsstrahlung of a hot (i00 K), thin
(104 km) transition sheath that envelopes the cooler Ha filaments and
acts as an interface with the hotter surrounding corona; this sheath is
seen in emission becauseof the relatively low optical depth of the
low-density corona.

Comparisonsof the observed brightness temperatures, as corrected
for the contribution of the corona, with theoretical models, and with
other observations at shorter radio wavelengths, indicate that a
power-law gradient in pressure provides a better fit than a constant
pressure model (Lang and Willson, 1989a). Variable physical parameters
of the transition sheath can explain controversial reports of the
detection of, or the failure to detect, the meter-wavelength counterpart
of H_ filaments. If the sheath were substantially thinner, then the
optical depth would not be large enoughfor detection of its 91.6-cm
bremsstrahlung; and if the electron density of the sheath was much
higher than Ne = 109 cm-3, then its plasma frequency would exceedour
observing frequency and the sheath radiation could not propagate out
to be observed.
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Figure 2. Three-hour VLA synthesis maps of the quiescent, or non-

flaring, intensity from the visible solar disk at 91.6 cm (left) and

20.7 cm (right). The circle denotes the visible solar limb; the tick
marks denote solar north and south; and the synthesized beamwidths are

denoted by the dark spots in the lower left-hand corners. The 20.7-cm

contours delineate active-re_ion coronal loops with a peak brightness
temperature of TB = 2.5 x i0_ K, while the 91.6-cm contours show more

elongated structures that are not associated with active regions and

have a peak TB = 7.8 x 105 K. The dominant 91.6-cm emission in the

southern hemisphere coincides with a dark, underlying Ha filament; the

emission (91.6-cm) and absorption (Ha) features have a similar shape,

position, elongation and orientation; but the 91.6-cm emission is wider

and longer, suggesting a warm transition sheath that acts as an

interface between the cool, dense Ha filament and the hot, rarefied

enveloping corona. (Adapted from Lang and Willson (1989a)).

4. RESOLVING FLARE COMPONENTS ."

k-

The classical time profile for the microwave or radio emission of

solar flares, or eruptions, consists of a low-level precursor, and

a rapid powerful impulsive component, followed by a more gradual

post-burst, or decay, phase (see Fig. 3). The VLA has now been used to

map these flaring components at 3-second time intervals, showing that

they originate in spatially separated sources (Fig 4 and 5).

These results suggest that solar flares are triggered by

interacting coronal loops; emerging coronal loops may interact with

adjacent ones, leading to the explosive release of magnetic energy
stored within them. The system of coronal loops then relaxes to a

spatially-different configuration during the decay phase. Comparisons
with various theoretical models indicate that a multithermal model with

magnetic field strengths of H = 75 to [20 G can explain the impulsive

component. Thermal gyroresonance emission from coronal loops with

H < 270 G can explain the precursor source; both the 20.7-cm and hard
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X-ray emission during the impulsive phase can be attrubuted to non-

thermal electrons in the coronal and chromospheric portions of

magnetic loops (Willson, Lang and Liggett, 1990; Willson et al., 1990).
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Figure 3. The time profile of a 20.7-cm burst showing the preburst

(i), impulsive (2,3), and post-burst (4,5,6) phases. The VLA snapshot

maps given in Fig. 4 indicate that these three phases originate from

spatially separated, resolved components. (Adapted from Willson, Lang

and Liggett (1990)).
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Figure 4. VLA snapshot maps of the total intensity, I, at 20.7-cm

wavelength during 3.3-second intervals at the times denoted by i to 6

in Fig. 3. The precursor (i) is spatially separated from the subsequent

impulsive bursts (2 and 3). The post-burst, or decay, phase (5,6)

originates in another spatially separate source that first becomes

detectable during the end (4) of the second impulsive burst (3). All

three components are resolved with a synthesized beamwidth of 12" x 30";

the angular scale can be inferred from the 60" spacing between the

fiducial marks on the axes. The contour intervals are in units of equal

brightness temperature, TB, with an outermost contour and contour

interval of T B = 4.4 x 105 K for i, and T B = 5.5 x 106 K for the others

five images. The maximum value is TBmax = 4.4 x 106 , 1.0 x 108 ,

1.3 x 108 , 7.7 x 107 , 4.4 x 107_and 5.5 x 107 K for 1,2,3,4,5 and 6

respective!y. (Adapted from Willson, Lang and Liggett (1990)).

5. TRIGGERING FLARES ACROSS TRANSrEQUATORIAL iO09£

Time-correlated radio bursts have been observed in active regions on

opposite sides of the solar equator (Figs. 6 and 7). These regions are

apparently linked by large-scale, trans-equatorial magnetic loops that

are at least 2.6 x 105 km (or 6') long. Energetic electrons

accelerated during a radio burst in one active region probably move

along thismagnetic conduit at velocities of about one-third the

velocity of light, thereby triggering radio bursts in the other active

region.
1
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Figure 6. Time profile of the 91.6-cm (327 MHz) emission detected

with one of the short VLA baselines (fringe spacing of about 5'). The

VLA snapshot maps at times 1,2,3,4 and 5 are shown in Fig. 7. (Adapted

from Lang and Willson (1989b)).
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Figure 7. Three-second VI_ snapshot maps at 91,6 cm for different

times during the burst shown in Fig. 6. The emission comes from

opposite sides of the solar equator in two regions separated by about

6', or 2.6 x 105 km; here the angular scale can be inferred from the

i' spacing between the fiducial marks on the axes. The contours mark

intervals of equal brightness temperature, TB, with an outermost

contour and contour interval of 1 x 106 K. (Adapted from Lang and

Willson (1989b)).
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